Skip to main content

Enhanced Delivery of DNA or RNA Vaccines by Electroporation

  • Protocol
  • First Online:
RNA Vaccines

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1499))

Abstract

Nucleic acid vaccines are a next-generation branch of vaccines which offer major benefits over their conventional protein, bacteria, or viral-based counterparts. However, to be effective in large mammals and humans, an enhancing delivery technology is required. Electroporation is a physical technique which results in improved delivery of large molecules through the cell membrane. In the case of plasmid DNA and mRNA, electroporation enhances both the uptake and expression of the delivered nucleic acids. The muscle is an attractive tissue for nucleic acid vaccination in a clinical setting due to the accessibility and abundance of the target tissue. Historical clinical studies of electroporation in the muscle have demonstrated the procedure to be generally well tolerated in patients. Previous studies have determined that optimized electroporation parameters (such as electrical field intensity, pulse length, pulse width and drug product formulation) majorly impact the efficiency of nucleic acid delivery. We provide an overview of DNA/RNA vaccination in the muscle of mice. Our results suggest that the technique is safe and effective and is highly applicable to a research setting as well as scalable to larger animals and humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Widera G, Austin M, Rabussay D et al (2000) Increased DNA vaccine delivery and immunogenicity by electroporation in vivo. J Immunol 164:4635–4640

    Article  CAS  PubMed  Google Scholar 

  2. Prud’homme GJ, Draghia-Akli R, Wang Q (2007) Plasmid-based gene therapy of diabetes mellitus. Gene Ther 14:553–564

    Article  PubMed  Google Scholar 

  3. Otten G, Schaefer M, Doe B et al (2004) Enhancement of DNA vaccine potency in rhesus macaques by electroporation. Vaccine 22:2489–2493

    Article  CAS  PubMed  Google Scholar 

  4. Mathiesen I (1999) Electropermeabilization of skeletal muscle enhances gene transfer in vivo. Gene Ther 6:508–514

    Article  CAS  PubMed  Google Scholar 

  5. Bagarazzi ML, Yan J, Morrow MP et al (2012) Immunotherapy against HPV16/18 generates potent TH1 and cytotoxic cellular immune responses. Sci Transl Med 4:155ra138

    Article  PubMed  PubMed Central  Google Scholar 

  6. El-Kamary SS, Billington M, Deitz S et al (2012) Safety and tolerability of the Easy Vax clinical epidermal electroporation system in healthy adults. Mol Ther 20:214–220

    Article  CAS  PubMed  Google Scholar 

  7. Trimble CL, Morrow MP, Kraynyak KA et al (2015) Safety, efficacy, and immunogenicity of VGX-3100, a therapeutic synthetic DNA vaccine targeting human papillomavirus 16 and 18 E6 and E7 proteins for cervical intraepithelial neoplasia 2/3: a randomised, double-blind, placebo-controlled phase 2b trial. Lancet. doi:10.1016/S0140-6736(15)00239-1

    PubMed Central  Google Scholar 

  8. Cu Y, Broderick KE, Banerjee K et al (2013) Enhanced delivery and potency of self-amplifying mRNA vaccines by electroporation in situ. Vaccines (Basel) 1:367–383

    Article  CAS  Google Scholar 

  9. Andre S, Seed B, Eberle J et al (1998) Increased immune response elicited by DNA vaccination with a synthetic gp120 sequence with optimized codon usage. J Virol 72:1497–1503

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Deml L, Bojak A, Steck S et al (2001) Multiple effects of codon usage optimization on expression and immunogenicity of DNA candidate vaccines encoding the human immunodeficiency virus type 1 Gag protein. J Virol 75:10991–11001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Muthumani K, Zhang D, Dayes NS et al (2003) Novel engineered HIV-1 East African Clade-A gp160 plasmid construct induces strong humoral and cell-mediated immune responses in vivo. Virology 314:134–146

    Article  CAS  PubMed  Google Scholar 

  12. Schneider R, Campbell M, Nasioulas G et al (1997) Inactivation of the human immunodeficiency virus type 1 inhibitory elements allows Rev-independent expression of Gag and Gag/protease and particle formation. J Virol 71:4892–4903

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Yang JS, Kim JJ, Hwang D et al (2001) Induction of potent Th1-type immune responses from a novel DNA vaccine for West Nile virus New York isolate (WNV-NY1999). J Infect Dis 184:809–816

    Article  CAS  PubMed  Google Scholar 

  14. Miyazaki S, Miyazaki J (2008) In vivo DNA electrotransfer into muscle. Dev Growth Differ 50(6):479–483

    Article  CAS  PubMed  Google Scholar 

  15. Draghia-Akli R, Khan AS, Cummings KK et al (2002) Electrical enhancement of formulated plasmid delivery in animals. Technol Cancer Res Treat 1:365–372

    Article  CAS  PubMed  Google Scholar 

  16. Atkins GJ, Fleeton MN, Sheahan BJ (2008) Therapeutic and prophylactic applications of alphavirus vectors. Expert Rev Mol Med 10:e33

    Article  PubMed  Google Scholar 

  17. Barnett SW, Burke B, Sun Y et al (2010) Antibody-mediated protection against mucosal simian-human immunodeficiency virus challenge of macaques immunized with alphavirus replicon particles and boosted with trimeric envelope glycoprotein in MF59 adjuvant. J Virol 84:5975–5985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Robert-Guroff M (2007) Replicating and non-replicating viral vectors for vaccine development. Curr Opin Biotechnol 18:546–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Smerdou C, Liljestrom P (1999) Non-viral amplification systems for gene transfer: vectors based on alphaviruses. Curr Opin Mol Ther 1:244–251

    CAS  PubMed  Google Scholar 

  20. Zimmer G (2010) RNA replicons - a new approach for influenza virus immunoprophylaxis. Viruses 2:413–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rayner JO, Dryga SA, Kamrud KI (2002) Alphavirus vectors and vaccination. Rev Med Virol 12:279–296

    Article  CAS  PubMed  Google Scholar 

  22. Gronevik E, von Steyern FV, Kalhovde JM et al (2005) Gene expression and immune response kinetics using electroporation-mediated DNA delivery to muscle. J Gene Med 7:218–227

    Article  CAS  PubMed  Google Scholar 

  23. Lin F, Shen X, McCoy JR et al (2011) A novel prototype device for electroporation-enhanced DNA vaccine delivery simultaneously to both skin and muscle. Vaccine 29:6771–6780

    Article  CAS  PubMed  Google Scholar 

  24. Sardesai NY, Weiner DB (2011) Electroporation delivery of DNA vaccines: prospects for success. Curr Opin Immunol 23:421–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Diehl MC, Lee JC, Daniels SE et al (2013) Tolerability of intramuscular and intradermal delivery by CELLECTRA® adaptive constant current electroporation device in healthy volunteers. Hum Vaccin Immunother 9:2246–2252

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Janess Mendoza, Rachel Elward, and Lauren Gites for help with compiling the manuscript and the animal procedures. This work was supported by Inovio Pharmaceuticals (Plymouth Meeting, PA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kate E. Broderick Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Broderick, K.E., Humeau, L.M. (2017). Enhanced Delivery of DNA or RNA Vaccines by Electroporation. In: Kramps, T., Elbers, K. (eds) RNA Vaccines. Methods in Molecular Biology, vol 1499. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6481-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6481-9_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6479-6

  • Online ISBN: 978-1-4939-6481-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics